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- ANALYSIS OF A DELAYED DELTA MODULATOR ﬂ
| Neil L. Gerr* and Stamatis Cambanis ——
. m Department of Statistics D I IC
University of North Carolina ELECTE
— : Chapel Hill, NC 27514
' AUG 10 1983
55? ABSTRACT D
— /Delayed Delta Modulation (DDM) uses a second feedback loop in addition to jf
the standard DM loop. While the standard loop compares the current predictive ;i;
estimate of the input to the current sample, the new loop compares it to the C
S

upcoming sample so as to detect and anticipate slope overloading. Since this

future sample must be available before the present output is determined and the

estimate updated, delay is introduced at the encoding.

The performance of DDM with perfect integration and step-function reconstruc-

tion is analyzed for each of three inputs. In every case, the stochastic stability

of the system is established. For a discrete time i.i.d. input, the (limiting)

joint distribution of input and output is derived, and the (asymptotic) mean square

sample point error MSE(SP) is computed when the input is Gaussian. For a Wiener

input, the joint distribution of the sample point and predictive errors is derived,
and MSE(SP) and the time-averaged MSE (MSE(TA)) are computed. For a stationary,
first-order Gauss-Markov input, the joint distribution of input and output is
derived, and MSE(SP) and MSE(TA) computed. Graphs of the MSE's illustrate the
With optimal setting of param-

improvement attainable by using DDM instead of DM.

eters, MSE(SP) (MSE(TA)) is reduced about 15% (35%). o
\ e
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I. DELTA MODULATION AND DELAYED DELTA M&BU%%J@!nhnioalrnrop
Pation Divigyep

Feedback/quantization schemes, such as Pulse-Code Modulation (PCM), Differen-
tial PCM (DPCM), and Adaptive PCM and DPCM, have been studied by a number of
authors (cf. [1],[3],[5-10], [14] and [15]). These schemes all have the same
goal: Instead of transmitting the entire analog signal Xt, t20, they use only
the samples an’ n=0,1,2,..., to generate and transmit digitally an appropriately

coded (e.g. quantized and possibly block coded) sequence Yn n=0,1,2,..., from

T’
which an analog output Yt’ t20, is reconstructed, which should approximate the
input as closely as possible. The analog input, which we denote by Xt through-
out, is usually taken to be some random process. The sampling interval T>0 is

fixed, and we employ (generically) the notation xnéxn throughout as well.

T
Delta Modulation (DM) is the simplest of the differential feedback/quantiza-
tion schemes. Using either perfect (p=1) or leaky (0<p<1l) integration, the

DM YEM of xt is generated as follows:

YoM -0,
DM _ DM DM -
Yn+1 = pYn + Abn+1 , n=0,1,2,...

where the step size A>0 and bQTI = sign(xn+1- pYn). For te[nT,(n+1)T), the value
of YEM is appropriately defined, depending on the system and the input, either
in terms of the present and earlier values of Yn (predictive reconstruction) or in
terms of neighboring past and future values of Yn (interpolative reconstruction).
When an interpolative reconstruction in used, the reconstruction is delayed until
the required future value(s) of Yn are available. Frequently, the "step-function"
(predictive) reconstruction Yt = YnT for te[nT,(n+1)T), n=0,1,2,... is considered.
More sophisticated reconstructions will, of course, yield better performance.

It is well known that the size of A determines the trade-off between the

granular, or round-off, error of the system and the slope overload error. In the
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DM (with perfect integration and step-function reconstruction) realization of
Figure 1, [8T,12T] is an interval of slope overload. Note how the DM response

at time 7T, though locally optimal, exacerbates the effect of the slope over-
load sufferéd immediately afterwards. Clearly, an upward step would have been
preferable to the downward step taken, but, a priori, there was no way of knowing
this. If we knew when a slope overload was to occur we could reduce its effect
by anticipating it and getting a '"head start'" on it. This suggests the following
scheme, for ¢20,

Y, =0

{o if ]x6| <ch, ‘

3 1 3 \J
A sign(x!) if |X0| > ch,

and for n=0,1,2,...,

Yn+1 = pYn + Abn+1,
where b . = sign(Xy,;-p¥y) if |Xﬁ+1| sch,
n+l sign(X' .) if |X' .| > cA
n"'l n.’.l .

Unfortunately, this scheme requires sampling both the signal Xt and its deriva-
tive X{. The following scheme is similarly motivated but requires sampling Xt

only, for c20,

Y, =0,
0 if |x1| Sch,
Y =
O |asign(x) if [x] > e,
and for n=0,1,2,...,
Yn+l = pyn * Abn+1’
i sign(X_, -pY ) if |xn+2- Ynl <ch,
where bn+1 =
sign(X_,,-pY,) if [xn+2- vnl >ch.




We call this Delayed Delta Modulation (DDM) because Yn is not determined
until Xn+1 has been sampled. Thus, delay i: introduced at the encoding step
(and, if we wish, at the decoding step, i.e. the reconstruction, as well).

To facilitate the analysis and allow comparison with the results of Fine [5],
Slepian [15] and Masry and Cambanis [14] we henceforth consider only perfectly
integrated DDM, and so take p=1, with the step function reconstruction,

Yt = YnT for te[nT,(n+1)T), n=0,1,2,... . Figure 1 includes both the DM and
(c=1)-DDM outputs of the given input.

Note that setting ¢ = « reduces DDM to DM. This enables us to check our
computations against the literature. When we set ¢ = 0, the DDM output is just
the DM output shifted to the left one sampling interval T, i.e., YﬁDM = Ygfl .

A system using greater delay and additional comparisons would undoubtedly
outperform this basic DDM scheme. Unfortunately, adding non-linear feedback
loops to non-linear differential quantization schemes greatly increases the

difficulty of their analysis.
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II. STOCHASTIC STABILITY OF DDM

Several types of '"stochastic stability" have been considered for feedback/
quantization of random inputs. Henceforth, we let e 4 xn-Yn denote the sample
point error (at instant n).

Gersho [ 8 ] (Hayashi [ 9 ]) has shown, for DM (with perfect integration) of
a stationary and continuously distributed input that has finite variance and a
rational spectral density (of an input that has i.i.d., zero-mean, finite vari-
ance increments), that

(i) the distribution of (xn,vn) (of en) converges weakly to a unique sta-
tionary steady-state distribution irrespective of the initial (output) state,
and

(ii) n'lfz;é Elek| is uniformly bounded, and E|e] < =, where e is the limit
in distribution of e,-

Kieffer [12] considers several other types of stochastic stability. Letting
X: 4 (xk,xk‘l,...), he shows that for DM of a stationary input, n-14:;3 f(X:,Y:)
converges almost surely as n + « for every bounded measurable f.

A stronger, and more useful, notion of stability is what may be called "rth
moment stochastic stability.” We say an analog-digital-analog system is rth
moment stochastically stable when for an input that is either stationary with
finite rth moment or has i.i.d. zero-mean finite-rth-moment increments

(a) e 2>e, whose distribution does not depend on the initial state and is
stationary for the sequence, and

(b) 1im n'lnil Iek|r = Ele|T <= a.s.

oo =
It is well known that DM, and DPCM, with leaky integration satisfy (a) and gene-
rate a uniformly bounded output. Thus, for a stationary input they satisfy (b)
trivially and so are rth moment stochastically stable. For systems with nerfect

integrators (b) is far more difficult to obtain and may be replaced by

D T T I I S T ST T . . . NE. Y S DU o
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(b') 1lim Ele | = Ele]f <=, or
e

E|e|r <

»

n-1
® 1imn~l J Ele |T
e k=0

or even for some v<r,

n-1
(") lim n'lkzoe|ek|" Ele] < = .

 { o
The averagings used by Gersho [ 8 ] and Hayashi [ 9 ] can be easily extended to
show that DM, and DPCM, with perfect integration satisfy (b"') for v=r-1. 1In
Theorem 1 below we present a uniform bound on WDDM - YDMI Hence, DDM with
leaky (perfect) integration satisfies (b) ((d' with v=r-1), and so is rth
moment (v=(r-1)th moment) stochastically stable whenever (a) holds.

Henceforth, when we say simply that DDM is stochastically stable we mean
only that (a) is satisfied. 1In the following subsections we will show that DDM
with prefect integration is stochasticallf stable. The modifications needed to
show that the same is true for the leaky integrator are straightforward.

In order to establish the results quoted earlier, Gersho [ 8 ]} embeds both

the input Xn and output Yn in a "state vector" Sn’ while Hayashi [ 9 ] considers

er* = X

! n+1'Yn’ the predictive error. They show that Sn (e;) is Markovian, and that

'lfk_o EIY | ¢ -]zk=0 Eleil ) is uniformly bounded. Thus, the sequence of ave-
raged distributions of S_ (e*) is tight, and so S_ (e*) has a stationary distribu-
n ‘'n n ‘°n

tion. By verifying certain conditions on the transition function of Sn (e;), it

-follows that the distribution of Sn (e;) converges weakly to a unique (stationary)

steady-state distribution irrepsective of the initial state S0 (ea). Our approach
parallels theirs,

The following uniform bound is very useful. From it we obtain tightness and
finiteness of moments for DDM as a consequence of the same for DM, This bound

can be shown to be tight for c#£0, but the argument will not be produced here.
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Theorem 1 For any given input, perfectly integrating systems (p=1), and c20, we

have, for all n,

DDM DM
hrn - Y | < (c+3)a .
Proof: Let D & (PP _y™M 120 crearty (i) Dy = 0, (ii) D, = -,0, or 4,

and (iii) Dn+1 Dn - 24, Dn’ or Dn+2A, nz1.

The bound will be established by contradiction. Let Ry < ® be the smallest

value of n s.t. IDnI > (3+c)A. Then |Dn | = (dy*2)4, where the integer d satis-
0 ‘

fies doe(1+c, 3+c]. Without loss of generality, assume

Dn = (d0+2)A . (2.1)
0
Let n, denote the largest value of n less than n, such that Dn = (do-Z)A.
Then
Dn = (do-Z)A and Dn i doA , (2.2)
1 1
_ DM _ o via1de” )
and sob . =1 and bn = -1. This yields {(Xn W2Y v v (IXn R | < e
1 1 1 1 1 1
and X >Y )} n {X SYDM}, and since Y = YM . (d.-2)A 2 YDM, this reduces
n,+l n n,+l1 'n n n 0 n
1 1 1 1 1 1 1
to X >Y +cAand X < YDM. From the first of these inequalities and
n1+2 n n1+1 n
(2.2) we derive
DM
xn 2> Yn + (dO-Z) + ch
1 1
> Y™ 4 (14c-2)8 + cA |
n |
1 |
2 Y™ _ A+ 28 |
n
1
2 Y™™ 4 ™ 4 2e
n n,+l
1 1
DM

P _
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DM
Hence bn +2

) = 1. But by (2.1), Dn1+2 = dOA. Thus bn1 = ] as well.

+2

This implies that

DM
n1+3 > Yn1+1 + doA - chA

X

DM
> Yn +1 + (14¢c)A - cA

1

DM .
2 Yn1+1 + A

DM

n1+2 :

2 Y

DM _ _ _
Hence b = 1., But by (2.1), Dn = d . A. Thus bn 43 = 1 as well.

n1+3 1+3 0 1
Repeating this series of steps (no-nl) times yields Dn = DOA, in contra-

0
diction of (2.1). O

A. Stationary input

We show first that DDM is stochastically stable for an input X_, t20, that

t’
is either
(i) stationary Gaussian with rational spectral density, or

(ii) stationary Markovian with finite variance, uniformly bounded and every-

where positive multivariate densities of all orders, and uniformly boun-

-

ded conditional densities of Xn+1 given Xn,..., Xo.

Processes of the former type satisfy all but the Markov requirement of the latter
type. However, as noted by Slepian [15], they can be embedded as the first com-
ponent in a stationary Gauss-Markov row-vector process it’ t20, that is of the
latter type. Thus, with a slight abuse of notation, we take in to be a (possibly

one-dimensional) row-vector that satisfies the conditions in (ii) and we put

s &y, X
n n

o1 Kiagds 120,1,2,...
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1. {S } is Markovian
=n

From the definition of DDM we see that

Yo = 80, X X ) = g(S) (2.4)
and so
Yn = hn(xn+1"'°’ xo)
Hence, with probability one,
S gl (SpseeesSp) = (Y 10X 0uX ) (Y 0eetuYo X oseens X))
D ~ ~
= (e Xna2s n+3)l( n+2”"’ Xp)
2 (v ,..X TS S
n+l1’"n+2’° n+3 n’ " 'n+2’ 'n+l
= sn+1|sn ’

and so Sn is a Markov process.

2. j§r} has a stationary distribution G
Gersho [ 8 ] has shown that the averaged distributions of YgM are tight, and,

DDM. By stationarity, it is also

as a consequence of Theorem 1, the same holds for Y
true of Xn. Thus the averaged distributions of the components of Sn are tight,
and hence so are the averaged distributions of S .

Conditioning

o A -1y
Let F_ denote the distribution of S , and G_ 2 zk - R~

backwards gives us

N ORN P(S,, €AlS =s)dF (s).

From (2.3), (2.4), and the fact that in is Markovian it follows that the transition
function P(Sn+leA|Sn=s)doesnot depend on n. Hence we may write Fn+1 = TFn'

For a set A, let D, denote the set of points s such that P(Sn+1€A|Sn=s) is
discontinuous, and let Di denote the set of points within 6 of DA’
result is Gersho's [ 8 ], but the proof has been simplified.

The following

D T P R P



.....................

Theorem 2. Let Sn be a Markov process with averaged distributions Gn and tran-

sition function P(S“+1eA|Sn=s) that does not depend on n. If
(1) the sequence Gn is tight, and
(2) for any open set A, there exists a function cA(G) + 0 as § + 0 such

8
that P(SneDA) < cA(G) for all n,

then Sn has a stationary distribution.

Proof: Because {G } is tight, there exist a subsequence Gn; and a distribution G
D . _ -1 D
such that Gni = G. But TGn = Gn +n (Fn-FO) and so TGni ™ G.
8 8 . )
From (2) we have Fn(DA) < cA(G) for all n, and so Gn(DA) < cA(G). Since DA
is open, G(Di) < cA(G) so that G(DA] = 0 for all A open.

Theorem 5.2.iii on page 31 in Billingsley [2] now gives us TGn (A) + TG(A) for
s i
i
all A open, and therefore TG, %>TG. Hence TG = G. O
i

In order to apply this theorem, it remains only to show that the second con-

dition is satisfied. The following lemmas prove that we may take cA(G) = ¢(6) = 8MS§,

Lemma 1. For DDM, for any Borel set A, 0<A, and all n, we have P(SneDi) < 8M§,

where M is a uniform bound on the conditional density of Xn+1 given Xn""' XO.

Proof: Observe that for DDM, for any region A, DA cD-= U:=_& Di, where

D, = {(51,52,53): s, = iA, and (sgl) = iA ¢ cA or s§1)= iA)}, and thus

8 § _ @ s .
DA cp = Ui=_w Di' Since for &8<A,
8 S, . ! . .
P(S eD;) = P(Y = iA, an+2-1A-cA|<6) + P(Y = iA, |Xn+2—1A+cA|<6)

+ P(Y_=ia, |xn+1-iA|<6) s
while <3
P(Y =id, |xn+1-iA|<6) = P(Y, ,=(i-1)8, b =1, |xn+1-iA|<6)
+ P(Y__;=(i+1)4, b = -1, |Xn*1-iA|<6)
s P(Y_ _,=(i-1)4, |xn+1-iA|<6) + PY__ =(i+1)8, |xn+1‘iA|‘5)’
ég
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we see that for 6<A,

8 v . . . .
P(S€D,) < i=§w {P(y =ia, |Xn+2-1A-cA|<6) s oY _=iA, |xn+2-1A+cA|<6) 2.5)

+ P(Y__,=(i-1)3, |Xn+1-iA|<6) + P(Y__ =(i+1)8, |Xn+1-iA|<6)}.
~But for any k,K, g?d m,

P(Y_=ka, |xm+2-x |<8) = p(|xm+2-xl < GIYm=kA)P(Ym=kA)

S 26M - P(Y_=k8) (2.6)

by (2.4), Lemma 2 below, and assumption. Hence, combining (2.5) and (2.6) we ob-

tain our result. O

In the following lemma, U and V are i- and j-dimensional random vectors.

respectively, and A is i-dimensional Lebesgue measure.

Lemma 2. Suppose fUIV(;W) £ M<®a,e. Then for all Borel AeRi and Bele ,
P(UeA|VeB) < MA(A).

Proof: P(UeA,VeB) = ] fU|V(§|V)fv(3)d§dG
AB

< J] M£,(v)dvdu = MA(A)P(VeB). O
AB

3. {s,} "converges" in distribution

Doob [ ; Theorem 5] gives, for a Markov process, conditions sufficient for
a stationary distribution to be the (periodic or aperiodic) steady-state distri-
bution. It is a simple matter to verify that these conditions are satisfied.
(cf. Gersho [ 8] and Gerr [ 7]). Since the sequence {A'lYn} alternates between

odd and even values, the period two result obtains (cf. Gerr [ 7] for more de-

tails),

B, 1,i,d. increments input

When the input to a DDM system has i.i.d. increments, such as a Wiener pro-

cess, the joint distribution of input and output clearly cannot converge.
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However, when the perfect integrator is used the predictive error e; ¢ xn+1'Yn

does converge in law.

A

We let In+1 = X n=0,1,... and assume that the In's form an i.i.d. se-

nel Xn

quence with mean zero, variance T, and bounded, everywhere positive density fI.

These assumptions are satisfied by the standard Wiener process.

1. {e*} is Markovian.
—n

It is easy to see that

* = * _

e In+2 + e Abn+1 s (2.7)
where

- i N . .
bn+1 51gn(en * In+2)1*(cA,¢0(en * In+2) * Slgn(e;)l[-cA,cA](e; * In+2)

4

- b(e; ’ In+2)
Thus

* -

e, = &(ex, I..5) (2.8)
and so

* =

en hn(In+1""’ 11) . (2.9)

Since the In's are i.i.d., it follows that e; is Markovian.

2. {e*} has a stationary distribution.

Hayashi [ 9 ] has shown that for DM of Wiener process input, the sequence of
averaged distributions of e;DM is tight for all A > 0. It is easily seen that

this result can be extended to include any process that has zero-mean, finite

DM

variance, i.i.d. increments. Since Ie;-en

1, the sequence of averaged distributions of e is tight for all & > 0.

Letting Fn denote the distribution of e;, we again have that

F (A = [ Plet, ) e Aler

nel s)an(s)
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From (2.7-9) we see that the transition function P(e;+le Ale; = s) does not depend

on n, and so we may write Fn+1 = TFn. It follows from (2.9) that e; and In+2 are
independenti Since bn+1 = %1, from (2.7) we see that we may take cA(G) = ¢(8) =
2M3, where M = sup fI' Thus both conditions of Theorem 2 are satisfied and e*

n

has a stationary distribution G.

3. {e*} converges in distribution.

Once again the conditions of Doob's Theorem are easily verified (cf. Gerr

[ 71), but in this case the aperiodic result obtains.

C. I.i.d. input

We show here that if the input xn is a discrete time i.i.d. process that has
bounded everywhere positive density, the joint distribution of input and output

A
converges weakly. Let Sn = (Yn, Xn+1, Xn+2).

1. {S_} is Markovian.
—n

This follows from Subsection A.l, as Xn is both stationary and Markov.

2. jgr} has a stationary distribution G.

Because Xn is stationary, Subsection A.2 implies that the averaged distribu-

tions of Sn are tight. As the X, are independent with bounded density the second con-

dition of Theorem 2 is also satisfied. Hence Sn has a stationary distribution G.

3. {s_} "converges" in distribution.
—Pﬁ

Once again, the conditions of Doob's Theorem are easily verified, and in this

case the period two result obtains,
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I1I. DDM OF DISCRETE TIME 1.I.D. INPUT

To analyze the response of DDM to a discrete time i.i.d. imput X,» n=0,1,2,...,
we adapt the approach taken by Fine [5 ] in his study of DM of this input. First,
we find the stationary joint distribution of input and output. This is done by
solving the Chapman-Kolmogorov Equation (CKE). Then, assuming that the input has
a standard normal distribution, we compute the asymptotic sample point mean
squared error (MSE(SP)) as a function of c for several values of A and as a func-

tion of A for several values of c.

Recall from Section II.C that when we write

P K L BT
"".‘,',, . Fo ‘s 'ete e Lt

RO Sl
. ';_‘_o.'.-._"_..LA;J‘A-_'-:‘_.t._A_'_-..g taat,

Fi(x) = lim P(Yn = iA, xn5x)
we in fact mean
ogso g s s
Fi(x) = lim 1{P(Yn = id, XnSx) + P(Yn+1 = iA, xn+lsx)} .

n -

Coet

In the following, all expressions will be written using the simplified, rather

than the precise averaged, form.

The input xn, n=0,1,2,..., is assumed to be i.i.d. symmetric, with finite

second moment and common distribution H that has density h.

A. Analysis,

1. The asymptotic distribution of (Xﬂ, X +llf _44

Let F;(x) 4 limn P(Yn==iA, Xn+1sx), i=0,+1, #2,... . The existence of these H?é
weak limits was shown in II.C. In (3.1) we show that these distributions have ﬁﬁ
a

densities and may be written in terms of the input distribution and the constants -

BER

P; é limn P(Yn = iA), and Q; é F;(iA), for which we derive an infinite system of
homogeneous linear equations (3.2-5) that is solved by the Method of Reduction.

By conditioning backwards we obtain a CKE for F;: %;ﬁ

. e - . - . .
. - . <t R . .. . . . - . -
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F;(XJ

l;i.‘m[P(Yn_1 = (i-1)A, bn =1, Xn+15x) + P(Yn_1 = (1+1)A, bn = -1, xn+15x)]

py_(H(0-H((i-1+0)0) 1" + (p,_ -q, ) [H(min(x, (i-1+¢)A)) - H((i-1-c)8) 71"
+ pi+iH(min(x,(i+1—c)A)) +q,,,[H(min(x, (i+1+c)4)) - H((i+1-c)a) 1" (3.1)

where [a]* = a if a0, [al* = 0 if a<o0.

It follows from (3.1) that F; has density f;, and so the endpoints neglected
in the derivation are of no concern. Specifically, we can write f;(x) =a;(x)h(xL
where h is the density of H and the step function a; is easily identified by (3.1)
(see Gerr [ J). It is also clear that the constants {pi,q.}? determine the

i'i=-e

[ -]
e .
distributions {Fi( )}i=-w .

By letting x - « in (3.1) we obtain

p; = pi_l[l-H((i-l-c)A)] - qi_l[H((i—1+c)A)-H((i-1-c)A)]
+ pi+1H((i+1-c)A) + qi+1[H((i+1+c)A)-H((i+1-c)A)] s (3.2)

and taking x = iA yields

q; = pi_I[H(iA)-H((i-uc)A)J*-+(pi_l-qi_l)cu(min(m,(i-1+c)A))-H((i-1-c)A)J+
+ p;  H(min(ia, (i+1-c)d)) + qi+1[H(min(iA,(i+1+c)A))-H((i+1-c)A)]+ ) (3.3)

The recursions (3.2 and 3) define an infinite system of homogeneous linear
(-]

equations in {pi,qi} . In addition, since the DDM system and input are sym-

i= -
metric, the output is symmetric, i.e.

. = P. 3.4
P.; P> (3.4)

and since the input has density,

q.i = lim P(Yn = -iA, xn+l

i < -ip) = lim P(Y, = iA, X ,, 2 i8) = p, - q;. (3.5)

1

The infinite homogeneous system given by (3.2-5) is supplemented by the fol-

lowing non-homogeneous normalization requirements. Due to the periodicity of

the output and the limiting stationary distribution
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! py=k%= 1 P, (3.6) ]
i even i odd
4
and so from (3.5), ‘
! a;=%= 1 aqa; . (3.6.1)
i even i odd

The system given by (3.2-6) is solved by the Method of Reduction (see the

Appendix), and we recover the distribution F; using (3.1).

Sadade b b

2. The asymptotic (mean square) sample point error.

As noted by Fine [ 1,

= VW

Fe(x) = 1lim P(en5x) = lim P(Xn-YnSx)
n n (3.7)
= lim Z P(Y_ = b, X sx+if) = E F (x+ib) ,
n 1 1 H

where F, (x) & 1im_ P(Y_ = iA, X sx). The distributions {F,(+)}],_,, are derived

by :

in terms of the distributions {F;(-)}ih°°

Fi(x) = lim[P(Yn_l = (i-1)A, b =1, X €x) + P(Y_ | = (i+1)4, b = -1, X <x)]

= F;_l(x)[l-H(i-1+c)A)] + [F;_l(x)-qi_ll * [H((i-1+c)d) - H((i-1-c)A)]
+ F;+1(x)H((i+1-c)A) + F;+1(min(x,(i+1)A))[H((i-1+c)A) - H((i-1-c)A)] . (3.8)

Since F; has density f;, it follows from (3.8) that Fi has density fi’ which for
c2] (which turns out to be the region of greatest interest) is given by

fi(x) = f;_l(x)H((l-i-c)A) + f;+1(x)H((i+1+c)A), x<(i-1)4,

£1 1 (DH((1-i+c)A) + £3 , (XJH((i+1+c)d), (i-1)8<x<(i+1)2

f;_l(x)H((i-1+c)A) + f;+1(x)H((i+1-c)A), (i+1)A < x.

Substituting the expressions for f; we find fi(x)=ai(x)h(x), where the step
functions ai(x) are given in Gerr [ 7 ].

Having found fi it is straightforward to derive the asymptotic sample point
mean square error, Letting e denote the limit in distribution of e 8 Xn-Yn,

from (3.7) we derive

'''''''''''''
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1-28 Ji [7, xf (dx + 4% i 7%, (3.9)
i i

B. Numerical results and discussion.

Recall that the infinite system (3.2-6) is solved by the Method of Reduction.
This involves setting pi=0=qi for |i| > I, solving the resulting finite system

exactly, and taking as the solution for the infinite system the limit as I+« of

ik~ e

] MSE(SP) = [T, xg (0dx = [ [T, ot Geitdax = ] [T, eit’s (e
i 1

these "approximating solutions.' The Theory of Majorants, developed by
Kantorovich and Krylov [11], and presented in the Appendix, assures us that the
Method of Reduction results in solution of the system encountered here. i
¥ We calculate MSE(SP) when the i.i.d. input is standard normal. Regarding
2 the Method of Reduction, for all A and c, the value of MSE(SP) computed when }
1 = 4 agreed with the I = 5 value to about four significant figures. In Table I
we exhibit the output level probabilities P;» i=0,...,5 for DDM and DM with op-
timal parameter settings. Note that these probabilities decrease rapidly,
facilitating the numerical technique. In addition, our computations for DDM with
large ¢ (i.e. DM) agree with Fine's [5 ] for DM to nearly four significant figures.
In Figure 2 we plot MSE(SP) as a function of ¢ for A = .6, .75 and .9. Ad-
ditional computations have shown that (A,c)opt = (.745, 2.29) is the pair of
values at which MSE(SP) is minimized and equals .5691., Fine [5 ] found that for
DM, Aopt = ,77, giving MSE(SP) = .6402., Thus, the reduction in MSE(SP) of opti-
B mal DDM versus optimal DM is about 11.1%. Note that the change in the value of
the optimal A is quite small. However, recalling how the size of A determines

the trade-off between round-off and slope overload, it is not surprising that

FROAEEPEOEY §

the optimal A is smaller for DDM than for DM. The additional DDM loop is designed

to mitigate the effect of slope overloads, which previously could only be done

through the use of larger A.

P VY Y. T Y _h.J
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II1.5

The shape of the curves in Figure 2 is typical of the response of DDM for
the inputs considered. However, for i.i.d. input, the performance of DDM is
uncharacteristically poor when ¢ is small. This may be rationalized as follows:

When c¢=0, Yn tracks xn but MSE(SP) is measured relative to xn, which is inde-

+1?

pendent of xn+ We expect that when the input is (more) positively correlated,

1°
smaller settings of ¢ will result in greater reductions in MSE(SP).

Fine [ 5] has pointed out 1-2/1 = ,3634 is a lower bound for MSE(SP) of a
predictive feedback/quantization scheme that has a fixed two-level quantizer
when the input is i.i.d. standard normal, and that this lower bound is attained
only by PCM with quantizer output levels % (2/‘rr)!2 ~ ¢+ ,798. This is not sur-
prising; PCM is non-differential, and so may have independent output values,
but DM is differential, hence its output values are necessarily correlated.
However, this lower bound does not apply to systems that use delay, such as DDM,
or perform "tree searches" (cf. Chan and Anderson [ 3 ]), i.e. are interpolative.

In Figure 3 we plot MSE(SP) as a function of A for ¢ = 1.5, 2.25, 3., and 8.
(which corresponds to ¢ = «, i.e. DM). The relative lack of dependence of
MSE(SP) on A for DM of i.i.d. standard normal input was noted by Fine [5 ], and
we see that a similar result holds for DDM. In addition, we find the improvement
of DDM with near optimal c¢ (=2.25) over DM to be almost uniform with respect to
A in its range of interest. .

For the input considered here, the increments In 4 X -X have E(Ii) = 2

n n-1

and E(1I ) = E(-Xi) = -1, so that adjacent increments have correlation

n+11n
-1/2. When adjacent increments are more positively correlated, slope overloads
should be more prevalent and we would expect even greater improvement in the per-

formance of DDM relative to DM, and for lower settings of c as well,
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IV. DDM OF WIENER PROCESS INPUT

The analysis of the response of DDM (with perfect integration) to Wiener
process input farallels that of Janardhanan [10] for DPCM with matched integra-
tion of stationary first-order Gauss-Markov input. In Subsection A the limiting
distribution of the predictive error is shown to satisfy an integral equation ob-
tained by conditioning on the preceding step, and the asymptotic sample point
and time-averaged mean square errors are expressed in terms of this limiting dis-
tribution. In Subsection B we present computational results.

The input Xt, t20, is the standard Wiener process. The increments

4 X -X

N RO

=1,2,..., are i.i.d. N(0,T), and we let ¢T denote their density,
A. Analysis
From Subsection II.B we have that the distribution F;(x) 4 P(eSSx) has density

f; and converges weakly to a distribution F* having density f*, f* is shown to

satisfy an (CKE) integral equation (4.2), which is solved by Galerkin's Method

(see the Appendix). The joint density of e* and e, the limits in distribution of

e; and e ¢ Xn-Yn, respectively, is then expressed in terms of f* in (4.3). This

yields the limiting distribution of en(t) g X tel0,T), (4.10), enabling

nT+t " Yn’
the calculation of the asymptotic predictive, sample point, and time-averaged

mean-square-errors (4.13, 14, and 16).

1. The density f* of e*.

Since the In's are independent, from (2.9) we have that e;_ and In are

1 +1

independent. Thus, using (2.7) we derive

F;(x)

- = * -0 Sa
P(e;_15x+A In+1’ bn 1) + P(en_ISx A In+1’ bn 1)

[7, AR (xst-w) - B2 (c-w)T*

+

+

(Fl_y(min(0,cA-u,x-A-u)) - F;_l(-cA-u)]+}¢T(u)du ) (4.1)

[F:_, (min(x+A-u,c-u)) - F;_l(max(o,.cA.u))J+ + Fx_ (min(x-8-u,-cA-u))




Since F* is the stationary distribution for e; it satisfies the recursion

(4.1). Substitution, differentiation, and a change of variables yields

() = {1100(c-8) [T, + 1(-(c+1)b s x 5 (c-1)8) [glop(xs8-v)  (4.2)

+ [1(x<-(c-1)8) [7 + 1(-(c-1)A £ x 5 (c*1)8) f?w]¢T(x-A-v)}f*(v)dv.

As f* is a density, it also satisfies
Jf*=1and £* 20 . (4.2.1,2)
From (4.2) we see that since f* is integrable, it is bounded, and hence
square integrable, i.e, f*eLz(Leb). In Subsection B of the Appendix we show
that the integral operator A given by the right hand side of (4.2) is bounded
and linear on Lz(Leb). Thus f* is an eigenfunction of A having eigenvalue one.
We now show that the manifold of integrable solutions to f=Af is one dimen-

sional.

Theorem 3. Suppose f is integrable and satisfies f=Af. Then f=rf*, where

r=[f.

Proof: Examining the kernel of A, we see that since f is integrable, it is
bounded and continuous, except possibly at the four points # (c#1)A. Let £* and
f be the positive and negative parts of f and set p=ff+, q=ff' and r=ff. Then

f=f'-f" and p-q=r. In Section III.B it was shown that T°F =FR=>F* for any ini-

0

tial distribution F. Thus for all bounded continuous functions h, IhAnf+-+pfhf*

and [hAf +qfhf*, so that [hAPEarfhes. But A"F = A"TAf = A"Mf = £ for all n.
Hence for all bounded continuous functions h,

Jhf = rfhfr
and since f and f* integrable and continuous except possibly at four points,

f = rf* a.e. . . O

The unique integrable solution to (4.2) is found by Galerkin's Method

(see the Appendix).
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2. The joint density of e and e*,

Let Fn(u,v) ¢ P(ensu, e;sv). By a sequence of steps similar to those used

at the beginning of the previous section we derive

= {r 3 - _ _ +

F (u,v) rjw {hF;_l(mln(u+A,v+A w)) - Fx_ (cA w)]
+ [F_; (min(cA-w,u+d,v+A-w)) - F;_l(max(o,-cA-w))J+
+ F;_l(min(-cA-w,u-A,v-A-w))

+ [F;_l(min(O,cA-w,u-A,v-A-w)) +F;_1(-cA-w)]+}¢T(w)dw,

From (2.7 and 9) and II.B.3 we have that F* =>F* that has density f*. As
F; is uniformly bounded (by one) and ¢T is integrable, it follows that Fn con-
verges weakly to a distribution F having density f. The joint density f of e
and e* is then given in terms of the density f* of e* by
f(u,v) = {£*(u+d) [1(v>(c-1)A)+1(-(c+1)Asv<(c-13A)1(u>-4)] (4.3)
+f*(u-A)[1(v<-(c-l)A)+1(-(c-1)A5vs(c+1)A)l(uSA)]}°¢T(v-u).

The density f(°) of e is the marginal

£(u) = [° £(u,v)av. (4.4)

3. The sample point and time-averaged mean square error.

Having derived the joint density of e and e*, we may now calculate the time-

averaged mean-square-error

MSE(TA) & 17 Ef(enar

: - A
where e(t) is the weak limit of en(t) = an+t'Yn'

Let F_(x;t) 8 P(e (t)sx). Then

F0t) = [] Ple_(t)sxle = u, ef = v)dF_(u,v) . (4.5)

However,

P(en(t)SxIen-u,e;-v) = EP(en(t)Sx|en-u,e;=v,Yn=iA)P(Yn=iA), (4.6)
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and
= *o =i = i =u+i =v+i =i
P(en(t)leen u,ex=v,Y =if) p(andsqulan u+1A,x(m1)T v+idY '1A). (4.7)
= P(XnT+th+1A|an=u+1A,x(n+l)T=v+1A) ,

since Yn is a functional of x(n+1)T""’ Xo.

Let B.(t) 2X.. -[(1-DHx,.+5x ] for te[0,T] and n=0,1,2

n nT+t T nT ° T “(n+1)T ’ $habse

Clearly, for all n, Bn is a zero-mean Gaussian process with Bn(O) =0 = Bn(T).
Furthermore, it is easily shown that E(Bn(s)Bn(t)) =s(l - %9 for 0ss<t<T. Thus

for all n, Bn(t), te[0,T], is distributed as a Brownian Bridge on [0,T], which

we will denote by BT(t). In addition, since E[Bn(t)XnT] =0 = E[Bn(t)x(n+1)T]
for all n and'te(O,T], Bn(t) is independent of both an and x(n+1)T' This gives
us

P(XnT+t5x+1A]XnT=u+1A,X(n+1)T=v+1A)

. t - t, .. s s
P(B, (£)<x+iA-[(1 - ) (u+id) +3(v+id)) | X p=u+id, X (n+1)T-v+1A)

P(B_(t)sx-[(1 -%)u'r-.'i:.-v 1) = P(B(t)<x-[ (1 -%)ud»%v 1), (4.8)

and combining (4.6-8) that

P(e, (t)sx|e =u,er=u) = P(B(t)sx-[(1 - Du + %v]) ) (4.9)

The distribution on the right hand side of (4.9) is bounded, continuous in u
and v, and absolutely continuous in x with respect to Lebesgue measure. Thus, we
may substitute (4.9) into (4.5) , pass to the weak limit on n, and differentiate
with respect to x to obtain the density f(°*;t) of e(t);

£(x;t) = [[f, (x-[Q1 -%)u + .%v])dF(u,v) , (4.10)

where ft is the density of BT(t). This enables us to calculate

E(e? (1)) [}szft-(x-[(l -%)u + %v])dxdp(u,v)

[1]x+1 - Pu + 2028, () dxdF(u,v)




..........
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. E[B%(t)] + Q1 —%)2 E(e?) + 251 - PDE(ee*) + (%)ze(e*z) (4.11)

with E[B%(t)] = t(1 -;9. Finally, substituting @.1]) into the definition for
MSE(TA), we perform the integrations over time to obtain

1 LE(e®) + E(ee?) + E(e*D)T 4+ T . (4.12)

MSE(TA)

For DM we see that e* é e + I, where I is N(0,T) independent of e. Thus

for DDM with ¢ = =,

-3

T

MSE(TA) E(e?) + I,

"

HE(e?) + Ele(esD)] + EL(e+D) %11 + L =
which is Equation (11) in Masry and Cambanis [14]

Using Subsections A.1 and A.2, where the densities of e and e* as well as
their joint density were derived, it isa straightforward task to calculate

MSE(SP) = E(ez), MSE(PR) = E(e*z) and E(ee*). The simplest calculation is for

MSE(PR). By definition,
MSE(PR) = [*_ x°f*(x)dx . (4.13)

From (4.3 and 4) we have

MSE (SP) ff; uzf(u)du = fjmffw uzf(u,v)dvdu

MSE(PR) +A%+al [° [ & j‘_’mj_c&]u £#(0) 6 (v-u)dvdu

MSE(PR) +2-48[0020(S50Y) - 1luf*(wdu (4.14)
T

where ¢ is the cumulative standard normal distribution function. From (4.3) we
have

E(ee*) = fjm o W f(u,v)dvdu

= MSE(PR) +A2e28{[ [ 2 , j‘_’wjfﬁA}(u+v)f*(u)¢T(v-u)dvdu

= MSE(SP) -4AJ';¢(-°%§3) £*(u)du . (4.15)

Substituting (4.14) and (4.15) in (4.12) yields
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2
MSE(TA) = MSE(PR) + 25—+ T o 2a0f% 178 4 [0 18 3(u « P e (u)op(v-u)dvau

2

2A T 4A cA+u cA+u
= MSE(PR) + 55— + — - = [ {¢( ) + 2ul 2¢( )-11}£*(u)du. (4.16)
: 3 63 f; _'{'T Tz

y B. Results and Discussion

. Using (4.13-16) we compute MSE(SP) and MSE(TA). Due to the stationarity of
L the increments of the Wiener input and the inclusion of A in the (new) DDM over-
load loop, MSE(SP)/T and MSE(TA)/T are both functions of A=A0T5 and c, but

0 MSB(AOT%,C) /T does not depend on T. Thus, it suffices to carry out the compu-
tations for T=1 only. The values obtained for the MSEs upon solving (4.2) by

P Galerkin's Method (cf. the Appendix regarding the use of Projection Methods and
the Method of Reduction) converged to four significant figures when N=5.

In Figures 4 and 5 we plot MSE(SP)/T and MSE(TA)/T, respectively, as func-
tions of ¢ for A = .751*, .9'1';5 and 1.05T%. Masry and Cambanis [14] found that
- for DM of Wiener input, minAMSE(SP) = ,585T and minAMSE(TA) = 1.085T, with

Aopt = I.OSTk for both. Our calculations with ¢ large agree with theirs to
about three significant figures. For DDM of Wiener input, MSE(SP) attains its
minimum of .4844T for (A,c)opt = (.9417*, 1.17), while MSE(TA) takes its mini-
mum value of .6698T for (A,c)opt = (.909 %, .296). These values represent 17.1%

= and 35.4% reductions, respectively, from DM. Note that the conjecture made at

the close of Section III has, in this instance, been justified. With the same

rationale, we expect that the improvement obtained by using DDM instead of DM

for a (first-order) Gauss-Markov input will be greater than that obtained for

Ry - AR

an i.i.d. input but less than that obtained here.
Finally, in Figure 6 we plot MSE(TA)/T as a -function of AO=AT'% for c¢=0,

.3, .6, and 5. Once more we find that for a good choice of c, the improvement

" v
ol v
R VAL

«
[

of DDM over DM is nearly uniform in A.
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%:i V. DDM OF STATIONARY FIRST-ORDER GAUSS-MARKOV INPUT

AN |
Yo |
F. The analysis of the response of DDM to stationary first-order Gauss-Markov

éj input parallels that of Slepian [15] for DM of stationary Gaussian inputs that

b

gq: have rational spectral density. As in our study of DDM of i.i.d. input, we de-

Mo

rive the limiting joint distribution of input and output. This is done by sol-
ving the system of integral equations obtained by conditioning on the preceding
output value. We then compute the asymptotic sample point and time-averaged
mean-square-errors.

The input Xt, t20, is taken to be the stationary first-order Gauss-Markov
process that has mean zero and covariance function R(s) = E(tht+s) = e"s‘.
Throughout, we let p . T,

A. Analysis

1. The asymptotic distribution of (Ynl5n+ll

We first show that the limiting joint distributions of (Yn=iA’xn+1)’

i=0,%1,%2,..., exist weakly and have densities which satisfy a (CKE) system of
integral equations (5.4), which is solved by Galerkin's Method (see the Appendix).

Let an)(x) ¢ P(Yn=iA,xn+ <x). By conditioning backwards we obtain

1

FW(x) = POY__ =(i-1)8,b_=1,X__<x) + PY__ =(i+1)A,b_=-1,X__ <x)
= P(Y,_ =(i-1)A,X_, >(i-14c)8,X_ <x)
+ P(Y__=(i-1)8, (i-1-) 88X, $(i-14¢)8,X >(i-1)8,X_, 5x) (5.1)
+ P(Yn_l=(i+1)A,xn+1<(i+1-c)A,xn+lsx)
.

P(Yn_1=(i*1)A»(i+1'°)A5Xn+15(1+1+¢)A.XnS(i+1)A,xn+15x).

All terms on the right hand side of (5.1) are of the following form:

P(Y .kA’anA’xn+l€B'xn+lsx)= P((X ""’xn)eEk’anA’xn+1€B’xn+15x)

n-1

X
= X 1B(xm1)jEk 1,0x 30 (Xgyeeox )dx L dx dx o,

A SO WP G G G, S, PRI VR N . ot ERPEP -, F— - — —aad
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S . . o ,
where E, = gn_l({ka}),gn_l(xo,...,Xn) =Y ,» and ¢, is the multivariate density

of (Xo,...,Xn+1). Thus an) has density fgn). Returning to (5.1), we have

pin)(xj - f(" 1)(u)P(X P GA1RBX L x|Y =(5-1)4,X =u)du

+

[tionys BT WPCG-1-0)88X < (i-19e)8,X , <x|Y, | =(i-1)8,% =u)du

+

(n-1) . L ~
ffwf1+1 (U)P(xn+1<(1+1-C)A,xn+15X|Yn_1-(1+1)A,Xn-u)du (5.2)

1)8(n-1 . . .
s JEDBD) (yp((is1-e)aex |, s(i414¢)8,X , sx|Y =(i+1)A,X =u)du.

1.
Because f( ) < 7 f(n) ¢, the standard normal demsity, fgn)(x) < (2m)" % for
all n and x. In Subsection II.A it was shown that an) => F;. Thus, the following
lemma implies that F, has density fi'
Lemma 3. Suppose for all n, Fn has density fn such that fh S M<ea,e. (Leb).

If Fn => F, then F has density f and £ < M a.e, (Leb).

Proof: Let A be any cpen set. Then for all n, F (A) M Leb (A), and there-
fore F(A) < M Leb (A). Hence F is absolutely continuous with respect to Lebesgue
measure, and its density f < M a.e. (Leb). 0

Because Yn-l = gn_l(xo,...,Xn) and Xn is Markovian, we have (a.e)

o [X
P(Xn+leA,Xn+15x|Xn=u,Yn_1-kA)-P(Xn+16A,Xn+ISx|Xn-u)-f‘m 1 (v)¢T(v|u)du * (5.3)

where ¢T denotes the conditional density of xt+T given Xt' This is a bounded (by
one) and continuous function of u, and an absolutely continuous function of x.

Hence, substituting (5.3) into (5.2), passing to the limit in n, and differentia-

ting with respect to x, we obtain the following system of integral equations for

the asymptotic joint densities {fi} a.e.; for i=0, * 1, #2,...,

£,(x) = {1Ai(x)ff; £ ¢ lai(X)f?i-l)Afi-l(“) (5.4)

(u)}¢T(X|U)dU.

1+1

(i+1)A
1Ci(x)jf; £, (0 + 1Di(x)j_°°
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where

& ((i-140)A,), B, 8 [(i-1-0)a, (i-1+c)AT ,

o
>
=
[}

ne>

Cs

(==, (i+1-c)8), D, & [(3+1-c)8, (i+1+c)AT .
Note that setting ¢ = « reduces (5.4) to Eq. (23) in Slepian [15]. Of course,

in addition to (5.4) we have the boundary condition

z £, =¢ a.e. (5.4.1)
1

Let f 4 (""f-l’fO’f1"")T' Since OSfiSzfi’ from (5.4.1) we have that
i

?elZ(L2(¢-1)). In Subsection C of the Appendix we show that the system of inte-
gral operators A given by the right hand side of (5.4) is bounded and linear on

£,(1,(6™1)), and that ¥ is the unique solution to § = Ag subject to Je; = 6. I
i

is found by Galerkin's Method (see the Appendix).

2. The (mean square) sample point error.

Having found the limiting distribution of (Yn’xn+1)’ we derive in (5.5) the

limiting distribution of (Yn’xn)’ which enables us to calculate the uswiptotic

mean square sample point error (5.6).

Let ng)(x) 4 P(Yn=iA,XHSX). Conditioning backwards yields
(M) = X dule D W)IP(x_ €A, X =u) + 1(u>(i-1)A)P(X_eB, |X_=u)]
i -0 i-1 n+l " 1i'"n n+l i''n
(n-1) - . -
+ f, [p(xn+leci|xn-u) + 1(u5(1+1)A)P(Xn+leDi|Xn-u)]}

i+l

Since ng) = Gi that has density g, we have

g; () = £, JCOIP(X_, €A [X =x) + 1(x>(i-1)B)P(X . €B, |X =x)]

+

fi+1(x)[P(Xn+leCi|Xn=x) +'1(xs(i+1!A)P(xn*leDi|Xn=x)]

'{fi_l(x)[in+1(x>(i-1)A)jBiJ

+

fi+l(x)[[ci+1(x5(i+1)A)fDi]}¢T(Y|x)dy , (5.5)
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and just as in (3.7) and (3.9),

'y g BN
. NP ]
Ll

s e
CRV R 4

MSE(SP) = 1-28] if" x g (x)dx + ) izpi . (5.6)
i i

Cali sl
. «
*ataas

3. The time-averaged mean square error.

We calculate the time-averaged mean square error
T
MSE(TA) = -J Elel(t)lat ,

. AP . . . A .
where e(t) is the limit in distribution of en(t) = an+t-YnT’ in much the same

way as Slepian [ ]. Its expression is given in (5.10).

For te(0,T), let F(n)(x st) = P(Y =i8,X - .<X). We show first that F(")( ;t)

has weak limit Fi(-;t), and that all of these distributions have densities.

The same steps used in the derivation of (5.2) yield

(n)(x t)

(n-1) (i -
I, £.07 WP(X €A X <x[Y =(3-1)8, X =u)du

+

[tioays B @POX, eBy X sxlY =(3-1)8,X =) du

o 17 e D (x|, €0, X o sx|Y =(341)4,X =u)du
+ IEi+1)A ffll)( UP(X_ €D, Xyt S | 1= (i+1)4,X =u)du. (5.7)

Recalling that Yn-l = gn_l(xo,...,xn), and Xt, t20, is first-order Markovian,

we have (a.e.)

p(xn+leE,an+tsx|Yn_1=kA,xn=u) = P(X_,1€E.X o.q

5xlxn=u)
= IEIT«, ¢T_t(wlv)¢t(vlu)d\/dw. (5.8)

Since an) = Fi that has density fi’ from (5.7 and 8) we get

(u)}

i+l

f (x;t) = {[Im I !Tl I)AIB (u) + [Iw Ic ffi+1)AID_]f
1

¢T_t(wlx) ¢t(xlu)dwdu, (5.9)

and so similar to (5.6) we have
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V.5

MSE(TA) = 1§ [of7, (x-it)? £, (x;t)dxdt
1

Lap2 ) iZPi ) ZT—AE ifﬁf’_‘; x£, (x;t)dxdt. (5.10)
i i

B. Numerical Results and Discussion

The numerical analysis (cf. the Appendix regarding the use of the Method of

Reduction) is carried through for T=.51, .36 and .22 (p=.6, .7 and .8). The

values for the MSEs converged to five, four, and three significant figures,

respectively, when N=10, 13 and 15 respectively. In every case, the value of

i -— k)
it .

I ceased to have an effect when (I-1)A > 3.5, i.e. when the largest output

level exceeded 3.5.

In Figures 7 and 8 we graph MSE(SP) and MSE(TA), respectively, as functions

of ¢ for T=.51 with A= .45, .55, and .65, and for T=.36 with A=.45, .525, and

.6. For large c, our calculations for MSE(TA) appear in good agreement with
Slepian's [15]. The two sets of plots in each figure are very similar both to
- each other and to their corresponding Wiener input plots. This is encouraging
in that it points to a certain uniformity in the performance of DDM for posi-

tively correlated signals.

In Tables II and III we display the minimum values of MSE(SP) and MSE(TA),

respectively, with the (optimal) parameter setting(s) that yield these minima,

for both DM and DDM. We find that MSE(SP) is reduced about 17%, while MSE(TA)

is reduced about 37%, by using optimal DDM instead of optimal DM. In every case,

the optimal value of A is smaller for DDM than for DM. Note that these results

-

'
<
d

are quite similar to those found for a Wiener input.
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VI. CONLCUDING DISCUSSION

A. The effects of perfect integration and step-function reconstruction on

mean-square-error and input-output synchronization.

Recall that when c=w, YEDM = YﬁM, while when c¢=0, YEDM = YETI, so that the

(c=0) -DDM output is just a T-shift of the DM output for any choice of reconstruc-

tion Y, based on {Yn}. This gives us

DDM 2

MSE (TA; (c=0) -DDM) nTet-YpTey) JAt

"lim' £ [T EL(X
n

) Jdt

.1 T DM
"I;m' I E[(an+t (n+1) T+t

MSE(TA; T-shifted DM),

where “lim"n a = limrl%(an+an+1) since Yn has period two. Hence, from Figures

5 and 8 we see that for DM with perfect integration and step function reconstruc-
tion YthnT for te[nT,(n+1)T), about one third of MSE(TA) is due to a lag in the
tracking, rather than a distortion of the shape, of the signal. This has an
important implication regarding the use of the (time-averaged) mean square error
criterion. When one is mainly interested in preserving the shape of the input

and associates no loss to small time lags, such as in speech or image transmission,

a more appropriate measure of system performance may be

MSE(TA;I-shifted) = min "Lim" 1 [T E[(X
sel n

nT+t~ nT+t+s) ]dt’

where I is an interval that corresponds to the time shifts deemed acceptable.

In Figures 9 and 10 we graph MSE(SP) and MSE(TA), respectively for DM and
T-shifted DM (i.e. DDM with c=~ and c=0) with perfect integration and, in the
time-averaged case, step-function reconstruction, of stationary first-order
Gauss-Markov input. We see that while MSE(SP; f-shifted DM) < MSE(SP;DM) only
when A is small (so small that Y:M cannot 'keep up" with Xn), MSE(TA; T-shifted DM)

< MSE(TA;DM) uniformly in &, i.e. Y lags behind X, equally for all A. Thus,
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VI.2

the lag in the tracking of Xt by YBM here is mainly a result of the use of the
step-function reconstruction.

1t is clear that MSE(SP) does not depend on the reconstruction and measures
only what may be called the "encoding-decoding error" of the system, while
MSE(TA) measures both the encoding-decoding error and the "reconstruction error."
In general, the reconstruction cannot compensate for deficiencies in encoding-
decoding. Specifically, given different 'modulations" Yn, Zn of Xn, n=0,1,2,...,
and using the same reconstruction for both Yt and Zt’ if MSEY(SP) < MSEZ(SP),
we expect that MSEY(TA) < MSEZ(TA). However, one expects that, in most cases,
MSE(TA) -MSE(SP), though positive, can be made small by using more sophisticated
reconstructions, which have higher complexity and require greater memory. For

example, for a Wiener input Wt, t20 , suppose we are given the perfect modula-

SF

tion Yn = wnT’ n=0,1,2,..., the step-function reconstruction YnT+t

L t t
nT+t (1- Tﬂyn * 1 Yper

Although in this case MSE(SP) = 0, it is easily verified that MSE(TA:SF) = T/2

=Y , and
n

the linearly interpolated reconstruction Y for tef0,T).

and MSE(TA:LI) = T/6. When the performance of the reconstruction is of secondary

interest to that of the modulator, MSE(SP) is the more appropriate criterion.

B. Unification of results.

The inputs analyzed in Sections III-V have samples Xn, n=0,1,2,..., that
may be viewed as generated by the first-order autoregressive sequence Xn+1=
pX, + a I ., where Ospsl, O<a<l, and {I } are i.i.d. N(0,1). In Section III
we have p=0, a=1; in Section IV we have p=1, a=1; in Section V we have 0<p<1,
a = (1_02)%. In Figure 11 we plot, for DM and DDM with perfect integration,

2

a min, MSE(SP) and a2 MSE(SP), respectively, as functions of p.

nin
(4,c) :
Dividing by a2 "standardizes' the MSE with respect to the increment power. The
optimal "standardized" performance of both DM and DDM is seen to vary only
slightly with p, and the improvement attainahle hy using DPM instead of MM to

be nearly uniform in p.

___________
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Arnstein [1] has analyzed DM with matched integration when a=1, and his

plot of minAMSE(SP) as a function of p in Figure 4.2 is included inFigure 11.
We see that for DM of first order autoregressive inputs, the loss incurred by
using the perfect instead of the matched integrator is less than 10% when p > .8,
and vanishes as p - 1. In addition, we note the following: for DDM with matched
integration, when p = 0, a = 1, min(A,c) MSE(SP) = .3634 (at (A,c)=(.798,x); cf.
Fine [5]), and when p=1, a=1, min(A,c) MSE(SP) = .4844 (cf. Subsection IV.(C).
For DDM with matched integration, we expect that a plot of a-z min(A’c) MSE (SP)
versus p will resemble Arnstein's [1;Figure 4.2] matched integration DM curve and
have .3634 and .4844 (instead of .585) as limits at zero and one, respectively.
A conjecture for this curve is also included in Figure 11.

In Figure 12 we graph Aopt/a (with respect to MSE(SP) as a function of p for

DM and DDM with perfect integration. Note that Aopt/a varies only slightly

%

with p = (l-az) , and thus also with a; it is encouraging that the optimal A has
a linear relation with the increment scale. The reduction in Aopt/a for DDM
from DM increases monotonically from 3% to 10% as p goes from zero to ome.

versus p for

Comparing the DM curve with Arnstein's [1;Figure 4.1] plot of Aopt

DM with matched integration when o=1, included in Figure 12, reveals that for
0<<p<1 the matched integrator also permits the use of slightly smaller A. This
is because with the matched integrator the random variables to be (binary)
quantized, i.e. the predictive errors, are in general smaller, and because the
matched integrator itself compensates for the more common type of slope over-
loads, those during which IXtI + 0. Using the matched integrator in DDM should
produce a similar reduction.

In Figure 13 we graph copt (with respect to MSE(SP)) as a function of p. As
expected, the more positive the correlation of the samples, the more useful the
new DDM overload loop, and hence the smaller the optimal value of c¢. It is in-

teresting that the plot is highly linear.
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APPENDIX. THE SOLUTION OF INFINITE LINEAR SYSTEMS

In each of our analyses, we encounter the problem of solving an infinite
linear system. In our first analysis, we show that the joint distributions
{F;(-)} may be expressed in terms of the constants {pi,qi} and the input dis-
tribution H(*) (cf. (3.1)). We then derive an infinite system of homogeneous
linear equations in these constants (cf. (3.2-5)) and a normalizing "boundary"
condition (cf. (3.6)). This infinite linear system is solved by the Method of
Reduction. This involves setting p; = 0= q9; for all i > I, solving the
resulting finite system, and taking as the solution for the infinite system the
limit of the finite "approximating" solution as I 4+ « , (See Kantorovich and
Krylov [11] for more on the Method of Reduction.) In the first subsection
below we show why this may be done.

In our last two analyses, the desired (joint) density is shown to satisfy
a (system of) linear integral operator equation(s) of the second kind (cf.
(4.2) and (5.4)) as well as a normalizing boundary equation (cf. (4.2.1) and
(5.4.1)), and to belong to a Hilbert space. Henceforth we let f denote the

desired (joint) density;
g = Ag (A.1)

represent the (system of) integral operator equation(s) ((4.2) or (5.4)) for
which, subject to a given normalization, f is the unique soluiion; H be the
Hilbert space to which f belongs; and {en} be a complete and orthonermal

system in H. Since feH, it has Fourier expansion
£(*) = [f e (), (A.2)
where the Fourier coefficients are given by

fn = <f,en>H .




A.2

e s

Substituting (A.2) into (A.1) and taking inner products (in H) on both sides
of the resulting equation yields an infinite system of linear equations in the
{fh], which is solved by the Method of Reduction. This procedure is known as
Galerkin's Method, one of many so-called Projection Methods for the solution of
(integral) operator equations. (For more on‘these methods see Krasnoselskii
l et.al. [13] and Zabreyko et.al [16].) In Subsections B and C below we show that
' the (system of) integral operator(s) A is bounded on H. It then follows (cf.

Gerr [7] and Gerr and Cambanis [6]) that Galerkin's Method may be used.

A. Majorant Systems and the Method of Reduction

We first note several properties of the infinite system of linear equations
obtained in the analysis of DDM of i.i.d. input. It is composed of an infinite
system of homogeneous linear equations, given by (3.2 and 3), in the unknowns

{pi,qi};;_°° , supplemented by the non-homogeneous normalization (3.6). Thus

K
f
A
i
L
'r
Y
¢

it has the following form:

x; = zaijxj, i=0, %1, £2,..., (A.3.1)
]
in =b, (A.3.2)
i
where b = Zi(pi+qi) = 1.5. Using (3.5) appropriately in (3.2 and 3) results in
0 < aij < 1 for all i,j, with aij # 0 for at most four values of j for all i. As
a shorthand we write x = Ax for (A.3.1) and define

~ T
P = ("'! p_lﬁq_lspoﬁqolpl)qll"') .
Theorem A.1. If ¥ e & satisfies (A.3.1), then ¥ = (1.5)7 (I;2)5. Thus

(A.1) has unique solution in 21.

Proof: Let K denote the positive cone in ll, i.e. K 8 {x € 21; X 20 all i},

and let y € K. In Section II.C. it was shown that an) => Fi from any initial

T T YT T T T T T I Y S e i T T TN AALSL TS g NP TR

state and so, in particular, pgn) > p, and qgn) > 4q,. Thus Ay 2 (1.5)'1]|§]|E
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pointwise. As Ze 11 may be written 7 = ?1-?2, where il’ ?2 € K, we have

N

that A"Z -+ (1.5)-1(2121)5 pointwise, with lzizi[ s ||Z]| <= . Since aAY = %,

R
a e

| A™ = % for all n, hence % = (1.5)'1(Zizi)ﬁ . 0

-,
Yo
»
.
-
o
~
s

This implies that there is a single linear dependency in A. If we sum the

equations (A.3.1) over i we obtain the trivial identity Zixi = Zixi . Thus the
system
X; = Zjaijxj, i=*1, %2,..., (A.4.1)
Z;xi =1, (A.4.2)
has P as its unique solution. It now follows that the system
x; = Zjaijxj, i= 11, #2,..., (A.5.1)
x0=1,

has as its unique solution § = ﬁ/p0 (having identified Xo with Py > 0). In
Theorem A.2 below we show that § may be found by the Method of Reduction so that

. ‘1~
finally § = p¥ = 1.5][q]| 777 .

Theorem A.2. The system (A.5) can be solved by the Method of Reduction.

Proof: 1In general, an infinite system of linear equations in the infinite set

(<]
of unknowns {xi}i__°° may be written as

xi = zjaijxj + bO » 1=0, 11, i2,... . (A'6)

The system of equations

X; = szinij * B, i=0, *1, #2,...,

is "Marjorant for the system (A.6)" when for all i and j, Ja,.| < A,, and

ij ij
Ibil < Bi' The system (A.5) is its own majorant, and by Theorem A.1, has unique
solution § ¢ K, the positive ll cone. The result then follows from Theorems I-IV

on pages 20-26 in Kantorovich and Krylov [11]. O
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B. DDM of Wiener Process Input

We prove below that the integral operator A given by the right hand side
of (4.2) is bounded on Lz(Leb). To prove this it suffices to show that the

integral operator B defined by

[Bf](x) = 1(x>(c-1)8) [ ¢ (x+A-u)f(u)du (A.7)

is bounded linear operator on Lz(Leb), the other terms being treated similar-
ly.

Clearly, B is linear. From (A.7) we have

[ 61

oSl b (8 w) @ (x+8-v) | £(w) £(v) | dudvdx

2
|l B£]]

IA

= [T by (u-v) | £ () £(v) | dudv
< [0 17 9p(a-v) £ (v)dudv
S A A I3 [ (A.8)

Hence B is bounded, with || B|| = 1.
It is easily shown that B is not compact on Lz(Leb). Similar to (A.8) we
have | B£[|% = [7 [ oY -cA)¢, (u-mIF(WE(V)dudv. Putting £ (x) =
-0 ~ n
w
1(n < x <n+ 1), we see that although fh + 0 in Lz(Leb),

2 n+l m+1, u+v
||Bfn|| = fn fz *(=- - cb)¢,p(u-v)dudv

141
» jofo¢2T(u-v)dudv >0,

and so Bfn -4 0 in Lz(Leb).

As a final consequence of this subsection we have that the integral opera-

tor D defined by

''''''''' AT I TR T e

AL VN W, UL - P T Ol A N PP T TR P P T D S N T




................................

0T A e T AT e T e e T o v LT L B TUIRITTR L
" LI S S oy e gy P A P P AP .S

A.5

[Df] (x) = fTQ¢T(x-u)f(u)du
is bounded, with || D|| s 1, but not compact, on L, (Leb).

C. DDM of Stationary First-order Gauss-Markov Input

We prove below that the system of integral operators A given by the right
hand side of (5.4) is a bounded linear operator on H = 12(L2(¢—1)). Note that
in this case, since every § ¢ H is integrable, the fact that f e H is the
unique integrable solution to (5.4) implies that 1 is a simple eigenvalue of A.

Let § € H. Using Mehler's Formula

dp(x|u) = ¢(X)n§0°"“n(x)"n(“) ,

where Hn(-) is the Hermite polynomial of order n, from (5.4) we have

FRelly = 1 0@,

=00

s8 I [f[{g g (v)]+lg;,, (we; ;v 1o (x|wo (x|v)6™ (x) dudvax

=00

-8 1 nZopz“ff{lgi(u)gi(v)|+|gi+1(u)gi_1(v)|}Hn(u)Hn(v)dudv
-8 1 n§o°2n[<lgil’ Ho>2 ¢ <lg |, H o ><lg [, Ho>]
s 16 | 7))

where the inner product <+,+> is in L2(¢'1). Thus A is a bounded linear opera-

tor on £,(L (7)) .
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TABLE I

Output Level Probabilities

DDM w/(A,c)opt DM w/A

opt
Py .383750 .384036
Py .246477 .246382
P, .058091 .057994
P3 .003522 .003618
P, .000034 .000038
Pg .00000003 .00000004

TABLE 11

minMSE (SP) and Optimal Parameters of DM and DDM

M DDM

f minMSE (SP) éopt minMSE (SP) (A,clopt

.6 357 .72 .296 (.64,1.57)

.7 .287 .66 .237 (.59,1.47)

.8 .201 .57 .166 (.52,1.37)
TABLE 111

minMSE (TA) and Optimal Parameters of DM and DDM

DM DDM
f  minMSE(SP) A, RINMSE(TA)  (A,0)
.6 .675 .57 .430 (.56, .42)
.7 .545 .57 .338 (.54,.37)
.8 .380 .53
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